ct cấp số nhân

Cấp số nhân là gì? Có những công thức và đặc điểm cần thiết cần thiết nhớ? Bài ghi chép này tiếp tục khối hệ thống tương đối đầy đủ nhất khiến cho bạn hiểu rộng lớn về phép tắc toán cơ phiên bản này.

Bạn biết đấy, nhiều năm mới đây phép tắc toán cấp cho số nhân được đi vào vô đề thi đua đảm bảo chất lượng nghiệp trung học tập phổ thông vương quốc, vẫn biết nó giản dị tuy nhiên có gây ra chút trở ngại với 1 vài ba các bạn. Nếu vứt thì thiệt tiếc nên ko nào là. Để khiến cho bạn học tập đảm bảo chất lượng, nội dung bài viết này tiếp tục nêu rõ ràng khái niệm, công thức cần thiết học tập và bài xích tập dượt cấp cho số nhân kèm cặp tiếng giải cụ thể.

Bạn đang xem: ct cấp số nhân

công thức cấp cho số nhân

Lý thuyết cấp cho số nhân

  • Công thức tổng quát: ${u_{n + 1}} = {u_n}.q$
  • Số hạng bất kì: ${u_n} = {u_1}.{q^{n – 1}}$
  • Tổng n số hạng đầu tiên: ${S_n} = {u_1} + {u_2} + … + {u_n} = {u_1}\frac{{1 – {q^n}}}{{1 – q}}$

Bài tập dượt cấp cho số nhân sở hữu tiếng giải chi tiết

Bài tập dượt 1. Cho cấp cho số nhân ( ${u_n}$ ), biết công bội q = 3 và số hạng trước tiên ${u_1}$ = 8. Hãy lần số hạng loại 2

A. 24

B. 16

C. 32

D. 40

Hướng dẫn giải

Áp dụng công thức cấp cho số nhân: ${u_{n + 1}} = {u_n}.q$

  • q = 3
  • số hạng loại 2: n + 1 = 2 => n = 1
  • ${u_1}$ = 8

Thay số vào: ${u_{1 + 1}} = {u_1}.q \Rightarrow {u_2} = 8.3 = 24$

Chọn đáp án A.

Bài tập dượt 2. Cho cấp cho số nhân ( ${u_n}$ ), biết số hạng trước tiên ${u_1}$ = 8 và số hạng sau đó ${u_2}$ = 24. Hãy lần công bội của sản phẩm số này

A. 6

B. 5

C. 4

D. 3

Hướng dẫn giải

Áp dụng công thức tổng quát: ${u_{n + 1}} = {u_n}.q$

  • ${u_1}$ = 8
  • ${u_2}$ = 24

Thay số vào: ${u_2} = {u_1}.q \Rightarrow 24 = 8.q \Rightarrow q = \frac{{24}}{8} = 3$

Chọn đáp án D.

Bài tập dượt 3. Cho cấp cho số nhân ( ${u_n}$ ), hiểu được số hạng trước tiên ${u_1}$ = 3, công bội là 2. Hãy lần số hạng loại 5

A. 96

B. 48

C. 24

D.12

Hướng dẫn giải

Áp dụng công thức số hạng bất kì: ${u_n} = {u_1}.{q^{n – 1}}$

  • ${u_1}$ = 3
  • q = 2
  • n = 5

Thay số vào:  ${u_5} = {3.2^{5 – 1}} = 48$

Chọn đáp án B.

Bài tập dượt 4. Cho cấp cho số nhân ( ${u_n}$ ), biết công bội q = – 3 và số hạng trước tiên ${u_1}$ = 4. Hãy tỉnh tổng của 6 số hạng đầu tiên

Xem thêm: skill 1 unit 7 lớp 8

A. 244

B. 82

C. 122

D. 730

Hướng dẫn giải

Áp dụng công thức tính tổng của n số hạng đầu tiên: ${S_n} = {u_1}\frac{{1 – {q^n}}}{{1 – q}}$

  • q = – 3
  • ${u_1}$ = 4

Thay số vào: ${S_6} = {u_1}\frac{{1 – {q^6}}}{{1 – q}} = 5.\frac{{1 – {{\left( { – 2} \right)}^6}}}{{1 – \left( { – 2} \right)}} = 730$

Chọn đáp án D.

Bài tập dượt 5. Cho cấp cho số nhân ( ${u_n}$ ), hiểu được ${u_1}$ = – 0,5 và số hạng loại 7 là ${u_7}$ = – 32. Hãy lần công bội

A. q = 2

B. q = – 2

C. q = ± 2

D. q = 3

Hướng dẫn giải

Áp dụng công thức số hạng bất kì: ${u_n} = {u_1}.{q^{n – 1}}$

  • n = 7
  • ${u_1}$ = – 0,5
  • ${u_7}$ = – 32

Thay số vào: $ – 32 = \left( { – 0,5} \right).{q^{7 – 1}} \Rightarrow q = \pm 2$

Chọn đáp án C.

Bài tập dượt 6. sành rằng một cấp cho số nhân ( ${u_n}$ ) sở hữu số hạng đầu ${u_1}$ = 8, công bội q = 2 và số hạng loại n là ${u_n}$ = 256. Hỏi n vì như thế bao nhiêu

A. 4

B. 5

C. 6

D. 7

Hướng dẫn giải

Áp dụng công thức cấp cho số nhân: ${u_n} = {u_1}.{q^{n – 1}}$

  • ${u_1}$ = 8
  • q = 2
  • ${u_n}$ = 256

Thay số vào: $256 = 8.{q^{n – 1}} \Rightarrow {q^{n – 1}} = 32 \Rightarrow {q^{n – 1}} = {2^5}$

=> n – 1 = 5=> n = 6

Chọn đáp án C.

Hy vọng nội dung bài viết này đã hỗ trợ ích bàn sinh hoạt đảm bảo chất lượng phép tắc toán cơ bản cấp số nhân, nếu như sở hữu vướng mắc gì hãy comment bên dưới nhằm mamnonvietduc.edu.vn trả lời khiến cho bạn.

Xem thêm: sgk toán 10 chân trời sáng tạo