giải phương trình bậc 4

Bài ghi chép trình diễn cơ hội giải phương trình bậc 4 (phương trình bậc bốn), đó là dạng toán thông thường bắt gặp nhập lịch trình Đại số 10 chương 3.

Dạng 1. Phương trình bậc tư dạng $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0.$

Bạn đang xem: giải phương trình bậc 4

Ta có: $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0$ $ \Leftrightarrow a\left( {{x^4} + 2{x^2}.k + {k^2}} \right)$ $ + bx\left( {{x^2} + k} \right) + \left( {c – 2ak} \right){x^2} = 0$ $ \Leftrightarrow a{\left( {{x^2} + k} \right)^2} + bx\left( {{x^2} + k} \right)$ $ + \left( {c – 2ak} \right){x^2} = 0.$
Đến phía trên sở hữu nhị phía nhằm giải quyết:
Cách 1: Đưa phương trình về dạng ${A^2} = {B^2}.$
Thêm bớt, thay đổi vế ngược trở thành dạng hằng đẳng thức dạng bình phương của một tổng, fake những hạng tử chứa chấp $x^2$ lịch sự ở bên phải.
Cách 2: Đặt $y = {x^2} + k$ $ \Rightarrow nó \ge k.$
Phương trình $a{x^4} + b{x^3} + c{x^2} + bkx + a{k^2} = 0$ trở thành: $a{y^2} + bxy$ $ + \left( {c – 2ak} \right){x^2} = 0.$
Tính $x$ theo gót $y$ hoặc $y$ theo gót $x$ để lấy về phương trình bậc nhị theo gót ẩn $x.$

Ví dụ 1. Giải phương trình: ${x^4} – 8{x^3} + 21{x^2} – 24x + 9 = 0.$

Cách 1:
Phương trình $ \Leftrightarrow \left( {{x^4} + 9 + 6{x^2}} \right) – 8\left( {{x^2} + 3} \right) + 16{x^2}$ $ = 16{x^2} – 21{x^2} + 6{x^2}$ $ \Leftrightarrow {\left( {{x^2} – 4x + 3} \right)^2} = {x^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 4x + 3 = x\\
{x^2} – 4x + 3 = – x
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 5x + 3 = 0\\
{x^2} – 3x + 3 = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{5 – \sqrt {13} }}{2}\\
x = \frac{{5 + \sqrt {13} }}{2}
\end{array} \right.$
Cách 2:
Phương trình $ \Leftrightarrow \left( {{x^4} + 6{x^2} + 9} \right)$ $ – 8x\left( {{x^2} + 3} \right) + 15{x^2} = 0$ $ \Leftrightarrow {\left( {{x^2} + 3} \right)^2} – 8x\left( {{x^2} + 3} \right) + 15{x^2} = 0.$
Đặt $y = {x^2} + 3$, phương trình trở thành: ${y^2} – 8xy + 15{x^2} = 0$ $ \Leftrightarrow \left( {y – 3x} \right)\left( {y – 5x} \right) = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
y = 3x\\
y = 5x
\end{array} \right.$
Với $y = 3x$, tao có: $x^2+3=3x$, phương trình vô nghiệm.
Với $y = 5x$, tao có: ${x^2} + 3 = 5x$ $ \Leftrightarrow {x^2} – 5x + 3 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{5 – \sqrt {13} }}{2}\\
x = \frac{{5 + \sqrt {13} }}{2}
\end{array} \right.$

Nhận xét: Mỗi cơ hội giải sở hữu điểm mạnh riêng rẽ, với cơ hội giải 1, tao tiếp tục tính được thẳng nhưng mà ko cần trải qua ẩn phụ, với cơ hội giải 2, tao sẽ sở hữu những đo lường giản dị và đơn giản rộng lớn và không nhiều bị lầm lẫn.

Dạng 2. Phương trình bậc tư dạng $\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)\left( {x + d} \right) = e{x^2}$ với $ad=bc=m.$

Cách 1: Đưa về dạng $A^2 = B^2.$
$\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)\left( {x + d} \right) = e{x^2}$ $ \Leftrightarrow \left( {{x^2} + px + m} \right)\left( {{x^2} + nx + m} \right) = e{x^2}$ $ \Leftrightarrow \left( {{x^2} + \frac{{p + n}}{2}x + m – \frac{{n – p}}{2}x} \right)$$\left( {{x^2} + \frac{{p + n}}{2}x + m + \frac{{n – p}}{2}x} \right)$ $ = e{x^2}$ $ \Leftrightarrow {\left( {{x^2} + \frac{{p + n}}{2}x + m} \right)^2}$ $ = \left[ {{{\left( {\frac{{n – p}}{2}} \right)}^2} + e} \right]{x^2}$, với $ad = bc = m$, $p = a + d$, $n = b + c.$
Cách 2: Xét coi $x=0$ liệu có phải là nghiệm của phương trình hay là không.
Trường hợp ý $x≠0$, tao có: $\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)\left( {x + d} \right) = e{x^2}$ $\left( {x + \frac{m}{x} + p} \right)\left( {x + \frac{m}{x} + n} \right) = e.$
Đặt $u = x + \frac{m}{x}$, điều kiện $\left| u \right| \ge 2\sqrt {\left| m \right|} $, phương trình trở nên $(u+p)(u+n)=e$, cho tới phía trên giải phương trình bậc nhị theo gót $u$ nhằm lần $x.$

Ví dụ 2. Giải phương trình: $\left( {x + 4} \right)\left( {x + 6} \right)\left( {x – 2} \right)\left( {x – 12} \right) = 25{x^2}.$

Cách 1:
$\left( {x + 4} \right)\left( {x + 6} \right)\left( {x – 2} \right)\left( {x – 12} \right) = 25{x^2}$ $ \Leftrightarrow \left( {{x^2} – 2x + 24 + 12x} \right)$$\left( {{x^2} – 2x + 24 – 12x} \right) = 25{x^2}$ $ \Leftrightarrow {\left( {{x^2} – 2x + 24} \right)^2} = 169{x^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 2x + 24 = 13x\\
{x^2} – 2x + 24 = – 13x
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 15x + 24 = 0\\
{x^2} + 11x + 24 = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = – 8\\
x = – 3\\
x = \frac{{15 \pm \sqrt {129} }}{2}
\end{array} \right.$
Cách 2:
$\left( {x + 4} \right)\left( {x + 6} \right)\left( {x – 2} \right)\left( {x – 12} \right) = 25{x^2}$ $\left( {{x^2} + 10x + 24} \right)\left( {{x^2} – 14x + 24} \right) = 25{x^2}.$
Nhận thấy $x = 0$ ko cần là nghiệm của phương trình.
Với $x≠0$, tao có: phương trình $ \Leftrightarrow \left( {x + \frac{{24}}{x} + 10} \right)\left( {x + \frac{{24}}{x} – 14} \right) = 25.$
Đặt $y = x + \frac{{24}}{x}$ $ \Rightarrow \left| nó \right| \ge 4\sqrt 6 $, tao được: $\left( {y + 10} \right)\left( {y – 14} \right) = 25$ $ \Leftrightarrow \left( {y + 11} \right)\left( {y – 15} \right) = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
y = – 11\\
y = 15
\end{array} \right.$
Với $y=-11$, tao sở hữu phương trình: $x + \frac{{24}}{x} = – 11$ $ \Leftrightarrow {x^2} + 11x + 24 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
x = – 3\\
x = – 8
\end{array} \right.$
Với $y=15$, tao sở hữu phương trình: $x + \frac{{24}}{x} = 15$ $ \Leftrightarrow {x^2} – 15x + 24 = 0$ $ \Leftrightarrow x = \frac{{15 \pm \sqrt {129} }}{2}$
Vậy phương trình đang được cho tới sở hữu luyện nghiệm $S = \left\{ { – 3; – 8;\frac{{15 – \sqrt {129} }}{2};\frac{{15 + \sqrt {129} }}{2}} \right\}.$

Nhận xét: Trong cơ hội giải 2, hoàn toàn có thể tao ko cần thiết xét $x≠0$ rồi phân chia nhưng mà hoàn toàn có thể bịa ẩn phụ $y=x^2+m$ nhằm chiếm được phương trình bậc nhị ẩn $x$, thông số $y$ hoặc ngược lại.

Dạng 3. Phương trình bậc tư dạng $\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)\left( {x + d} \right) = m$ với $a+b=c+d=p.$

Ta có: $\left( {x + a} \right)\left( {x + b} \right)\left( {x + c} \right)\left( {x + d} \right) = m$ $ \Leftrightarrow \left( {{x^2} + px + ab} \right)\left( {{x^2} + px + cd} \right) = m.$
Cách 1:
$\left( {{x^2} + px + ab} \right)\left( {{x^2} + px + cd} \right) = m$ $ \Leftrightarrow \left( {{x^2} + px + \frac{{ab + cd}}{2} + \frac{{ab – cd}}{2}} \right)$$\left( {{x^2} + px + \frac{{ab + cd}}{2} – \frac{{ab – cd}}{2}} \right) = m$ $ \Leftrightarrow {\left( {{x^2} + px + \frac{{ab + cd}}{2}} \right)^2}$ $ = m + {\left( {\frac{{ab – cd}}{2}} \right)^2}.$
Bài toán quy về giải nhị phương trình bậc nhị theo gót biến đổi $x.$
Cách 2:
Đặt $y=x^2+px$, điều kiện $y \ge – \frac{{{p^2}}}{4}$, phương trình trở thành: $\left( {y + ab} \right)\left( {y + cd} \right) = m.$
Giải phương trình bậc nhị ẩn $y$ nhằm lần $x.$

Ví dụ 3. Giải phương trình: $x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8.$

Cách 1:
Ta có: $x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8$ $ \Leftrightarrow \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) = 8$ $ \Leftrightarrow \left( {{x^2} + 3x + 1 – 1} \right)$$\left( {{x^2} + 3x + 1 + 1} \right) = 8$ $ \Leftrightarrow {\left( {{x^2} + 3x + 1} \right)^2} = 9$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} + 3x + 1 = 3\\
{x^2} + 3x + 1 = – 3
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} + 3x – 2 = 0\\
{x^2} + 3x + 4 = 0
\end{array} \right.$ $ \Leftrightarrow x = \frac{{ – 3 \pm \sqrt {17} }}{2}.$
Cách 2:
$x\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right) = 8$ $ \Leftrightarrow \left( {{x^2} + 3x} \right)\left( {{x^2} + 3x + 2} \right) = 8.$
Đặt $y = {x^2} + 3x$ $ \Rightarrow nó \ge – \frac{9}{4}$, tao được: $y\left( {y + 2} \right) = 8$ $ \Leftrightarrow {y^2} + 2y – 8 = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
y = 2\\
y = – 4\:(loại)
\end{array} \right.$ $ \Leftrightarrow nó = 2.$
Với $y=2$, tao sở hữu phương trình: ${x^2} + 3x – 2 = 0$ $ \Leftrightarrow x = \frac{{ – 3 \pm \sqrt {17} }}{2}.$
Vậy phương trình đang được cho tới sở hữu luyện nghiệm $S = \left\{ {\frac{{ – 3 + \sqrt {17} }}{2};\frac{{ – 3 – \sqrt {17} }}{2}} \right\}.$

Nhận xét: Ngoài cơ hội bịa ẩn phụ như đang được nêu, tao hoàn toàn có thể bịa một trong số dạng ẩn phụ sau:
Đặt $y = {x^2} + px + ab.$
Đặt $y = {x^2} + px + cd.$
Đặt $y = {\left( {x + \frac{p}{2}} \right)^2}.$
Đặt $y = {x^2} + px + \frac{{ab + cd}}{2}.$

Dạng 4. Phương trình bậc tư dạng ${\left( {x + a} \right)^4} + {\left( {x + b} \right)^4} = c$ với $(c<0).$

Xem thêm: điểm chuẩn y hải phòng 2021

Đặt $x = nó – \frac{{a + b}}{2}$, phương trình trở thành: ${\left( {y + \frac{{a – b}}{2}} \right)^4} + {\left( {y – \frac{{a – b}}{2}} \right)^4} = c.$
Sử dụng khai triển nhị thức bậc $4$, tao chiếm được phương trình: $2{y^4} + 3{\left( {a – b} \right)^2}{y^2} + 2{\left( {\frac{{a – b}}{2}} \right)^4} = c.$
Giải phương trình trùng phương ẩn $y$ nhằm lần $x.$

Ví dụ 4. Giải phương trình: ${\left( {x + 2} \right)^4} + {\left( {x + 4} \right)^4} = 82.$

Đặt $y=x+3$, phương trình trở thành: ${\left( {y + 1} \right)^4} + {\left( {y – 1} \right)^4} = 82$ $ \Leftrightarrow \left( {{y^4} + 4{y^3} + 6{y^2} + 4y + 1} \right)$$\left( {{y^4} – 4{y^3} + 6{y^2} – 4y + 1} \right) = 82$ $ \Leftrightarrow 2{y^4} + 12{y^2} – 80 = 0$ $ \Leftrightarrow \left( {{y^2} – 4} \right)\left( {{y^2} + 10} \right) = 0$ $ \Leftrightarrow {y^2} = 4 $ $\Leftrightarrow nó = \pm 2.$
Với $y=2$, tao được $x=-1.$
Với $y=-2$, tao được $x=-5.$
Vậy phương trình sở hữu luyện nghiệm $S = \left\{ { – 1; – 5} \right\}.$

Dạng 5. Phương trình bậc tư dạng ${x^4} = a{x^2} + bx + c.$

Đưa phương trình về dạng $A^2 = B^2$ như sau: ${x^4} = a{x^2} + bx + c$ $ \Leftrightarrow {\left( {{x^2} + m} \right)^2} = \left( {2m + a} \right){x^2} + bx + c + {m^2}$, nhập tê liệt $m$ là một số trong những cần thiết lần.
Tìm $m$ để $f\left( x \right) = \left( {2m + a} \right){x^2} + bx + c + {m^2}$ sở hữu $Δ=0$. Khi tê liệt $f(x)$ sở hữu dạng bình phương của một biểu thức:
Nếu $2m+a<0$, phương trình $ \Leftrightarrow {\left( {{x^2} + m} \right)^2} + {g^2}\left( x \right) = 0$ (với $f\left( x \right) = – {g^2}\left( x \right)$) $ \Leftrightarrow \left\{ \begin{array}{l}
{x^2} + m = 0\\
g\left( x \right) = 0
\end{array} \right.$
Nếu $2m+a>0$, phương trình $ \Leftrightarrow {\left( {{x^2} + m} \right)^2} = {g^2}\left( x \right)$ (với $f\left( x \right) = {g^2}\left( x \right)$) $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} + m = g\left( x \right)\\
{x^2} + m = – g\left( x \right)
\end{array} \right.$

Ví dụ 5. Giải phương trình: ${x^4} + {x^2} – 6x + 1 = 0.$

Ta có: ${x^4} + {x^2} – 6x + 1 = 0$ $ \Leftrightarrow {x^4} + 4{x^2} + 4 = 3{x^2} + 6x + 3$ $ \Leftrightarrow {\left( {{x^2} + 2} \right)^2} = 3{\left( {x + 1} \right)^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} + 2 = \sqrt 3 \left( {x + 1} \right)\\
{x^2} + 2 = – \sqrt 3 \left( {x + 1} \right)
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – \sqrt 3 x + 2 – \sqrt 3 = 0\\
{x^2} + \sqrt 3 x + 2 + \sqrt 3 = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = \frac{{\sqrt 3 – \sqrt {4\sqrt 3 – 5} }}{2}\\
x = \frac{{\sqrt 3 + \sqrt {4\sqrt 3 – 5} }}{2}
\end{array} \right.$
Vậy phương trình đang được cho tới sở hữu luyện nghiệm: $S = \left\{ {\frac{{\sqrt 3 – \sqrt {4\sqrt 3 – 5} }}{2};\frac{{\sqrt 3 + \sqrt {4\sqrt 3 – 5} }}{2}} \right\}.$

Nhận xét:
Phương trình dạng $x^4 = ax+b$ được giải Theo phong cách tương tự động.
Phương trình $Δ=0$ là phương trình bậc tía với cơ hội giải và đã được trình diễn ở nội dung bài viết trước: Cách giải phương trình bậc 3 tổng quát lác. Phương trình này hoàn toàn có thể cho tới $3$ nghiệm $m$, cần thiết lựa lựa chọn $m$ sao cho tới việc đo lường là tiện lợi nhất. Tuy nhiên, mặc dù người sử dụng nghiệm $m$ nào là thì cũng cho tới và một thành quả.

Dạng toán 6. Phương trình bậc tư dạng $a{f^2}\left( x \right) + bf\left( x \right)g\left( x \right) + c{g^2}\left( x \right) = 0.$

Cách 1:
Xét $g(x) = 0$, giải lần nghiệm và demo lại nhập phương trình ban sơ.
Trường hợp ý $g(x) ≠ 0$, phương trình $ \Leftrightarrow a{\left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right]^2} + b\frac{{f\left( x \right)}}{{g\left( x \right)}} + c = 0.$
Đặt $y = \frac{{f\left( x \right)}}{{g\left( x \right)}}$, giải phương trình bậc hai $a{y^2} + by + c = 0$ rồi lần $x.$
Cách 2: Đặt $u = f\left( x \right)$, $v = g\left( x \right)$, phương trình trở thành: $a{u^2} + buv + c{v^2} = 0$, coi phương trình này là phương trình bậc nhị theo gót ẩn $u$, thông số $v$, kể từ tê liệt tính $u$ theo gót $v.$

Ví dụ 6. Giải phương trình: $20{\left( {x – 2} \right)^2} – 5{\left( {x + 1} \right)^2}$ $ + 48\left( {x – 2} \right)\left( {x + 1} \right) = 0.$

Đặt $u=x-2$, $v=x+1$, phương trình trở thành: $20{u^2} + 48uv – 5{v^2} = 0$ $ \Leftrightarrow \left( {10u – v} \right)\left( {2u + 5v} \right) = 0$ $ \Leftrightarrow \left[ \begin{array}{l}
10u = v\\
2u = – 5v
\end{array} \right.$
Với $10u=v$, tao có: $10\left( {x – 2} \right) = x + 1$ $ \Leftrightarrow x = \frac{7}{3}.$
Với $2u=-5v$, tao có: $2\left( {x – 2} \right) = – 5\left( {x + 1} \right)$ $ \Leftrightarrow x = – \frac{1}{7}.$
Vậy phương trình đang được cho tới sở hữu luyện nghiệm: $S = \left\{ {\frac{7}{3}; – \frac{1}{7}} \right\}.$

Dạng 7. Phương trình bậc tư tổng quát $a{x^4} + b{x^3} + c{x^2} + dx + e = 0.$

Phân tích những hạng tử bậc $4$, $3$, $2$ trở thành bình phương trúng, những hạng tử còn sót lại fake lịch sự về phải: $a{x^4} + b{x^3} + c{x^2} + dx + e = 0$ $ \Leftrightarrow 4{a^2}{x^4} + 4ba{x^3} + 4ca{x^2} + 4dax + 4ae = 0$ $ \Leftrightarrow {\left( {2a{x^2} + bx} \right)^2}$ $ = \left( {{b^2} – 4ac} \right){x^2} – 4adx – 4ae.$
Thêm nhập nhị vế một biểu thức $2\left( {2a{x^2} + bx} \right)y + {y^2}$ ($y$ là hằng số) nhằm về ngược trở thành bình phương trúng, còn vế cần là tam thức bậc nhị theo gót $x$: $f\left( x \right) = \left( {{b^2} – 4ac – 4ay} \right){x^2}$ $ + 2\left( {by – 2ad} \right)x – 4ae + {y^2}.$
Tính $y$ sao cho tới vế cần là 1 bình phương trúng, khi tê liệt $Δ$ của vế cần tự $0$, như thế tao cần giải phương trình $Δ= 0$, kể từ tê liệt tao sở hữu dạng phương trình $A^2=B^2$ không xa lạ.

Xem thêm: cách làm salad hoa quả

Ví dụ 7. Giải phương trình: ${x^4} – 16{x^3} + 66{x^2} – 16x – 55 = 0.$

Ta có: ${x^4} – 16{x^3} + 66{x^2} – 16x – 55 = 0$ $ \Leftrightarrow {x^4} – 16{x^3} + 64{x^2}$ $ = – 2{x^2} + 16x + 55$ $ \Leftrightarrow {\left( {{x^2} – 8x} \right)^2} + 2y\left( {{x^2} – 8x} \right) + {y^2}$ $ = \left( {2y – 2} \right){x^2} + \left( {16 – 16y} \right)x + 55 + {y^2}.$
Giải phương trình $\Delta = 0$ $ \Leftrightarrow {\left( {8 – 8y} \right)^2} – \left( {55 + {y^2}} \right)\left( {2y – 2} \right) = 0$ tìm được $y=1$, $y= 3$, $y=29.$
Trong những độ quý hiếm này, tao thấy độ quý hiếm $y=3$ là tiện lợi nhất cho tới việc đo lường.
Như vậy lựa chọn $y=3$, tao sở hữu phương trình: ${\left( {{x^2} – 8x + 3} \right)^2} = 4{\left( {x – 4} \right)^2}$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 8x + 3 = 2\left( {x – 4} \right)\\
{x^2} – 8x + 3 = – 2\left( {x – 4} \right)
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
{x^2} – 10x + 11 = 0\\
{x^2} – 6x – 5 = 0
\end{array} \right.$ $ \Leftrightarrow \left[ \begin{array}{l}
x = 3 \pm \sqrt {14} \\
x = 5 \pm \sqrt {14}
\end{array} \right.$
Vậy phương trình đang được cho tới sở hữu luyện nghiệm $S = \left\{ {3 + \sqrt {14} ;3 – \sqrt {14} ;5 + \sqrt {14} ;5 – \sqrt {14} } \right\}.$

Nhận xét:
Ví dụ bên trên cho tới tao thấy phương trình $Δ= 0$ có tương đối nhiều nghiệm, hoàn toàn có thể lựa chọn $y=1$ tuy nhiên kể từ tê liệt tao sở hữu phương trình ${\left( {{x^2} – 8x + 1} \right)^2} = 56$ thì ko tiện lợi lắm cho tới việc đo lường, song, thành quả vẫn như nhau.
Một cơ hội giải không giống là kể từ phương trình ${x^4} + a{x^3} + b{x^2} + cx + d = 0$, đặt $x = t – \frac{a}{4}$ tao tiếp tục chiếm được phương trình khuyết bậc tía theo gót $t$, nghĩa là sự việc quy về giải phương trình ${t^4} = a{t^2} + bt + c$ đang được trình diễn ở dạng 5.