thể tích lăng trụ tam giác đều

Thể tích khối lăng trụ tam giác đều là dạng bài xích xuất hiện nay không ít nhập đề đua ĐH trong thời hạn. Vì vậy nội dung bài viết tiếp sau đây tiếp tục cung ứng không thiếu thốn công thức tính thể tích khối lăng trụ tam giác đều gần giống bài xích tập dượt nhằm những em hoàn toàn có thể tìm hiểu thêm.

1. Hình lăng trụ tam giác đều là gì?

Bạn đang xem: thể tích lăng trụ tam giác đều

Lăng trụ tam giác đều đó là hình lăng trụ với nhì lòng là nhì tam giác đều đều bằng nhau.

Hình lăng trụ tam giác đều

2. Tính hóa học hình lăng trụ tam giác đều

Một số đặc điểm của hình lăng trụ tam giác đều như sau:

  • Hình lăng trụ tam giác đều phải có 2 lòng là nhì tam giác đều vì chưng nhau 

  • Các cạnh lòng vì chưng nhau

  • Các mặt mày mặt của hình lăng trụ tam giác đều là những hình chữ nhật vì chưng nhau

  • Các mặt mày mặt và nhì lòng luôn luôn vuông góc với nhau

>>Đăng ký tức thì sẽ được thầy cô ôn tập dượt hoàn hảo cỗ kỹ năng hình học tập không khí 12<<<

3. Công thức tính thể tích khối lăng trụ tam giác đều

Thể tích của khối lăng trụ tam giác đều vì chưng diện tích S của hình lăng trụ nhân với độ cao hoặc vì chưng căn bậc nhì của thân phụ nhân với hình lập phương của toàn bộ những cạnh mặt mày v, sau đó chia vớ cả cho 4.

Công thức tính thể tích khối lăng trụ tam giác đều như sau:

V = S.h = (\sqrt{3})/4a^{3}h

Trong đó:

  • V: Thể tích khối lăng trụ tam giác đều (đơn vị m^{3}).

  • S: Diện tích khối lăng trụ tam giác đều (đơn vị m^{2}).

  • H: Chiều cao khối lăng trụ tam giác đều (đơn vị m).

Thể tích khối lăng trụ tam giác đều

4. Công thức tính diện tích S khối lăng trụ tam giác đều

4.1. Tính diện tích S xung quanh

Diện tích xung xung quanh lăng trụ tam giác đều tiếp tục vì chưng tổng diện tích S những mặt mày mặt hoặc vì chưng với chu vi của lòng nhân với độ cao.

S_{xq}=P.h

Trong đó: 

  • P: chu vi đáy

  • H: chiều cao

4.2. Tính diện tích S toàn phần

Diện tích toàn phần của khối lăng trụ tam giác đều chủ yếu vì chưng bằng tổng diện tích S những mặt mày mặt và diện tích S của nhì lòng.

V= s.h= \frac{\sqrt{3}}{4a^{3}}.h

Trong đó:

  • A: chiều nhiều năm cạnh đáy

  • H: chiều cao

5. Một số bài xích thói quen thể tích lăng trụ tam giác đều (có điều giải chi tiết)

Câu 1: Tính thể tích khối lăng trụ tam giác đều ABC.A’B’C’ với cạnh lòng vì chưng 8cm và mặt mày phẳng phiu A’B’C’ tạo nên với lòng ABC một góc vì chưng $60^{0}$.

Giải:

Gọi I là trung điểm của BC tớ có:

AI\perp BC (theo đặc điểm lối trung tuyến của tam giác đều)

A'I\perp BC (vì A’BC là tam giác cân)

\widehat{A'BC,ABC}=60^{0}

=> AA= AI.tan60^{0}=(\frac{8\sqrt{3}}{2}).\sqrt{3}= 12 cm

Ta có: S(ABC)= (\frac{8\sqrt{3}}{4})=2\sqrt{3}

Thể tích khối lăng trụ tam giác đều ABCA’B’C’ là:

V= AA’.S(ABC)= 12.2\sqrt{3}=24\sqrt{3} (cm^{3}) (cm^{3})

Câu 2: Cho hình lăng trụ ABC.A’B’C’ lòng ABC là tam giác đều với cạnh a vì chưng 2 centimet và độ cao h vì chưng 3cm. Tính thể tích hình lăng trụ ABC.A’B’C’?

Giải:

Vì lòng của lăng trụ là tam giác đều cạnh a

V=S_{ABC}.h=\sqrt{3}.3=3\sqrt{3}(cm^{3})

Xem thêm: kim loại dẫn nhiệt tốt nhất

Câu 3: Tính thể tích của khối lăng trụ tam giác đều phải có cạnh lòng vì chưng 2a và cạnh mặt mày vì chưng a?

Giải:

Vì đó là hình lăng trụ đứng nên lối cao tiếp tục vì chưng a

Đáy là tam giác đều nên:

S_{ABC}=\frac{2a^{2}\sqrt{3}}{4}=a^{2}\sqrt{3}

=> V= S_{ABC}.a=a^{2}\sqrt{3}.a=a^{3}\sqrt{3}

Nhận tức thì bí mật ôn tập dượt hoàn hảo cỗ kỹ năng và cách thức giải từng dạng bài xích tập dượt hình học tập ko gian 


 

Câu 4: Cho hình lăng trụ tam giác đều ABC.A’B’C’. Tính thể tích khối lăng trụ này khi:

a) AB = 2 cm; AA’ = 6 cm

b) AB = 6 cm; BB’ = 8 cm

Giải:

a) Theo đề bài xích tớ có:

a= AB= 2cm

h= AA’= 6cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=6.2^{2}.\frac{\sqrt{3}}{4}=6\sqrt{3}

b) Theo đề bài xích tớ có:

a= AB= 6cm

h= BB’= 8cm

Áp dụng công thức tính thể tích lăng trụ tam giác đều:

V= h.a^{2}.\frac{\sqrt{3}}{4}=8.6^{2}.\frac{\sqrt{3}}{4}=72.\sqrt{3}(cm^{2})

Câu 5: Tính thể tích V của khối lăng trụ tam giác đều phải có toàn bộ những cạnh vì chưng a.

Giải:

Khối lăng trụ đang được cho rằng lăng trụ đứng với cạnh mặt mày vì chưng a.

Đáy là tam giác đều cạnh a.

=> V= a.\frac{a^{2}\sqrt{3}}{4}=\frac{a^{2}\sqrt{3}}{4}

Đặc biệt, thầy Tài đang được với bài xích giảng về thể tích khối lăng trụ cực kỳ hoặc giành riêng cho chúng ta học viên VUIHOC. Trong bài xích giảng, thầy Tài với share cực kỳ nhiều cách thức giải bài xích quan trọng, thời gian nhanh và thú vị, vậy nên những em chớ bỏ dở nhé!


Trên đó là tổ hợp công thức tính thể tích khối lăng trụ tam giác đều cũng tựa như những dạng bài xích tập dượt thông thường bắt gặp nhập lịch trình Toán 12. Nếu những em mong muốn đạt sản phẩm tốt nhất có thể thì nên truy vấn Vuihoc.vn và ĐK thông tin tài khoản nhằm tìm hiểu thêm những công thức toán hình 12 và luyện đề từng ngày! Chúc những em đạt sản phẩm cao nhập kỳ đua trung học phổ thông Quốc Gia tiếp đây.

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học tập online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng suốt thời gian học tập kể từ thất lạc gốc cho tới 27+  

⭐ Chọn thầy cô, lớp, môn học tập theo gót sở thích  

⭐ Tương tác thẳng hai phía nằm trong thầy cô  

⭐ Học đến lớp lại cho tới lúc nào hiểu bài xích thì thôi

⭐ Rèn tips tricks gom bức tốc thời hạn thực hiện đề

⭐ Tặng full cỗ tư liệu độc quyền nhập quy trình học tập tập

Đăng ký học tập test không tính phí ngay!!

>> Xem Thêm:

Xem thêm: having finished their work the workers expected to be paid

  • Công thức tính thể tích khối tròn xoe xoay và bài xích tập dượt vận dụng
  • Công thức tính thể tích khối cầu thời gian nhanh và đúng đắn nhất
  • 12 Công thức tính thể tích khối chóp kèm cặp ví dụ cụ thể
  • Công thức tính thể tích khối trụ tròn xoe xoay và bài xích tập
  • Công thức tính thể tích khối nón và bài xích tập